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Abstract. We study global stability properties for differentiable optimization problems of the type:
P(f, H, G): Min f(x) on M[H, G]={x€R" | H(x) =0, G(x) =0} .

Two problems are called equivalent if each lower level set of one problem is mapped homeomorphi-
cally onto a corresponding lower level set of the other one. In case that 2( f, H, G) is equivalent with
P(f,H,G) for all (f, H, G) in some neighbourhood of (f, H, G) we call (f, H, G) structurally
stable; the topology used takes derivatives up to order two into account. Under the assumption that
M[H, G] is compact we prove that structural stability of 2(f, H, G) is equivalent with the validity of
the following three conditions:

C.1. The Mangasarian—Fromovitz constraint qualification is satisfied at every point of M[H, G}.
C.2. Every Kuhn-Tucker point of 2(f, H, G) is strongly stable in the sense of Kojima.
C.3. Different Kuhn-Tucker points have different ( f-)values.
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1. Introduction, Main Result

Let R” denote the n-dimensional Euclidean space and C*(R”, R) the space of real
valued, k-times continuously differentiable functions on R”. Moreover, we fix two

finite index sets [, J, with I={1,...,m}, J={1,...,s} and m<n. In the
sequel, the functions f, h,, g, i€l ]E J, belong to C ([R" R), and H, resp. G,
stands for (h,,...,h,)", resp. (g, ..., gs)T.

The optimizatlon problem under consideration will be of the following standard
type:

P(f, H, G): Minimize f on M[H, G], (1.1)
where the feasible set M[H, G] is defined as
M[H,G]={x€R" | h(x)=0, g;(x) =0, i€, jEJ}. (1.2)

The lower level set corresponding to the functional value ¢ will be denoted as
follows:

S(f H,G):={x€ M[H, G]| fx)=1} . (1.3)
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DEFINITION 1.1. The optimization problems ?(f, H, G) and ?(f, H, G) are
called equivalent if there exist continuous mappings ¢: R X R*—R" and : R— R
with the properties P1-P3:
P1. For every t €ER the mapping ¢,: R"— R" is a homeomorphism from R"
onto itself, where ¢,(x) 1= ¢(¢, x).
P2. The mapping ¢ is a homeomorphism from R onto itself and i is monotoni-
cally increasing.
P3. ¢,[L'(f, H, G)]|= L*(f, H, G) for all tER. O

In [1] it is pointed out that the above concept defines an equivalence relation on
the set of optimization problems of type ?(f, H, G). The above equivalence
concept is very natural w.r.t. optimization since — globally — all descent flows in
one problem are carried over into corresponding descent flows in the other one.
The fact that in Definition 1.1 an one parameter family ¢, of homeomorphisms
rather than one fixed homemorphism is chosen is due to the possible shift of
stationary points from the boundary into the interior of the feasible set under
small perturbations of the problem data (cf. also [1]).

DEFINITION 1.2. The optimization problem ?(f, H, G) is called structurally
stable if there exists a C -neighbourhood O of (f, H, G) with the property that
P(f, H, G) and 2(f, H, G) are equivalent for all (f H G)eo. O

The Cﬁ-topology above for the product II}_, C*(R",R) will be the product-
topology generated by the strong (or Whitney-) C*-topology C> on each factor
CY(R", R) (cf. [2], [3]). A typical base-neighbourhood of f € C*(R", R) will be the
set f + W,, where %, is defined as follows with the aid of a continuous positive
function ¢: R*— R,

{¢ec<w ®) 6]+ 2 |22 ()

¢
reor

< eg(x) for all xeR"}.

Since structural stability seems to be a very natural and basic concept, the next
main theorem underlines the importance of the constraint qualification of Man-
gasarian and Fromovitz on the one hand, and the concept of strong stability of
Kojima on the other hand.

MAIN THEOREM. The optimization problem P(f, H, G) with compact feasible
set M[H, G is structurally stable if and only if the following three conditions are
satisfied:
Cl. The Mangasarian—Fromovitz constraint qualification is satisfied at every
point of M[H, G].
C2. Every Kuhn—Tucker point of P(f, H, G) is strongly stable in the sense of
Kojima.
C3. Different Kuhn—Tucker points have different ( f-)values. O
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We proceed with a clarification of the notions used in the main theorem. Let Df
(resp. D*f) denote the row-vector of first partial derivatives (resp. the matrix of
second partial derivatives).

Futhermore we put

Jo()={jE€ 7| g(x)=0}. (1.4)

DEFINITION 1.3. The Linear Independence Constraint Qualification (shortly
LICQ) is said to hold at x € M[H, G] if the vectors Dh,(x), i€ I, Dg,(x),
Jj € Jy(x), are linearly independent. The Mangasarian—Fromovitz Constraint Qual-
ification (shortly MFCQ) is said to hold at x € M[H, G] if the following two
conditions are satisfied:

MF 1. The vectors Dh,(x), i € I, are linearly independent.

MF 2. There exists a vector ¢ € R” satisfying:

Dh,(x)é=0, iel
Dgi(x)§>0, i€ Jo(¥) |- (15
A vector ¢ satisfying (1.5) will be called an MF-vector. ]

DEFINITION 1.4. A point x € M[H, G] is called a Kuhn—Tucker point if there
exist real numbers A;, u, satisfying the following relations:

Df(x) =2 \Dh(%)+ 2 wDg(F) (1.6a)
iel j€To(®)
w0, jEJ(x). (1.6b)
The numbers A;, p; above are called Lagrange multipliers. |

The set of possible Lagrange multipliers at a Kuhn—Tucker point is compact (in
fact a compact polyhedron) if and only if MFCQ is satisfied at x (cf. [4]). Of
course, the latter set is a singleton if LICQ hoilds.

For a given problem 2?( f, H, G) and a subset % of R” we put:

norm[( f, H, G), U] =
= sup max {|¢(x)| + E .g—xd) (x)]

xEU ¢€{fshi,i€17gj’j€])
2
: ¢ I}
+ x)| (-
; ax; axj *)

For x € R" and p >0 let B(x, p) C R" denote the open Euclidean ball centered
at x with radius p, and according to M. Kojima [5] we define:

(1.7)

DEFINITION 1.5. Let x € M[H, G] be a Kuhn-Tucker point for #(f, H, G).
Then, x is called strongly stable if for some 8 >0 and each & € (0, 3] there exists
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an a >0 such that whenever (f, H, G) satisfies norm [(f—f H , G- 5),
B(x, 8)]= @, the ball B(x, ) contains a Kuhn-Tucker point f g>( f, H, G)
which is unique in B(x, 8). O

In this paper we shall actually work with another formulation of strong stability
which is equivalent to the above one under the assumption that MFCQ is valid
(cf. [5]). For this we need some more definitions.

Let x € M[H, G] be a point at which (1.6a) is fulfilled. With respect to a set of
Lagrange multipliers A,, i €I, y;, j € Jy(x), satisfying the relation (1.6a) we
introduce the Lagrange function L, ,;:

Lip () = f0) = 2 A = 2 pygi(2) (18)
iel JET(F)
Let A(x) denote the polyhedron formed by the set of vectors (A, n) = (...,

Ais oo oo My - ierjese) Which satisfy both (1.6a) and (1.6b); here, some fixed
ordering of the components of (A, ) is assumed. So we have

AE) = {(A, w) € RN () "1y satisfies (1.6a) and (1.6b)}.  (1.9)
Finally, for x €R" and J C J we put:
W(x,J)={¢ ER" | Dh(x)¢ =0,i €1, Dg;(x)é =0, jEJ}. (1.10)

LEMMA 1.1. (M. Kojima, [5]). Let x € M[H, G] be a Kuhn—Tucker point for
P(f, H, G).
(i) If LICQ is satisfied at x, then x is strongly stable if and only if the matrix
D L[A L (X) has nonvamshmg determinants with a common sign on the
subspaces W(x, T), for all J with J,_(x) C jc, o(X), where

@)= {j € 1) | >0} (1.11)

(ii) Let MFCQ be satisfied at x, but LICQ not. Then, x is strongly stable if and
only if for every (A, p) € A(X) the matrix DZL[ML](A?) is positive definite on
the subspace W(x, J, (x)), with J,.(x) as in (1.11). O

We call a Kuhn-Tucker point x nondegenerate, if LICQ holds at x together with
J,(x)=J,(x) and with nonsingularity of DZL[ aw](X) on W(x, Jo(x)).

The necessity part of the Main Theorem has been proved in [1] with special
perturbation techniques and tools from algebraic topology. So, in this paper we
turn to the sufficiency part. Its proof is divided into three parts which correspond
to the next three sections. This main body of the proof is contained in Section 4.

2. Reduction to the Case I =@ and ¢ = Identity

In this section we first reduce the sufficiency part of the proof of the Main
Theorem to the case with inequality constraints only. Let the optimization
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problem @(f, H, G), with compact feasible set M[H, G], be given and suppose
that the conditions C1-C3 as formulated in the Main Theorem, hold. From the
definition of strong stability together with our constraint qualification MFCQ it
follows that strongly stable stationary points are isolated and altogether describe a
closed set. Hence, on the compact set M[H, G] there is a finite number of them,
say X, ..., X.

Startmg with a sufficiently small C2-neighbourhood 0 of ( f, H, G) we proceed
as follows. For each ( f H, G) € 0 we perform a coordinate transformation
&7.i1,6) In x-space of compact support, shortly é, such that ¢ is of class C! and,
moreover, ¢ is of class C in a neighbourhood of the points x,,. .., x; the
coordinate transformation ¢ maps the set M [H ] in a neighbourhood of M [H G]
onto the corresponding set of the unperturbed problem, where M [H ] = {xeR"
H(x)=0}.

Moreover, the coordinate transformations $ are performed in an uniform way
for all ( f, H, G) € 0; hence, their construction depends, more or less, only on
the neighbourhood 0.

Note that a (local) C?-coordinate transformation in x-space does not affect the
characterization of strong stability of stationary points in the sense of Lemma 1.1.
Having established the above coordinate transformation ¢ we may assume that
H = H, and further coordinate transformations can be performed such that they
leave the set M[H] in a neighbourhood M{H, G] invariant; in particular, certain
flows can be taken to be tangential to the zero set of H, which then have a parallel
extension to a neighbourhood of the latter set. Therefore, after the construction
of the transformations qg, we may assume that there are no equality constraints
present, i.e. I = ﬂ.

The local C*-coordinate transformation. Choose X € {X,,... , %}, and
(f, H, G)E 0. From the condition MF1 in Definition 1.3 it follows that the
zero-sets M[H] and M [H] are C’-manifolds in some neighbourhood U of %. In
fact, put y={(x), where y,= hi(x), i=1,...,m, y;= §jT(x -x), j=m+1,

,n, and where ¢, ] m+1, ,n, form a basis for the orthogonal
complement of the set {D Th(x),i= ., m}. Then, ¢ is a local C*-coordinate
transformation around X, mapping the zero set M[H] to the set {y|y,=0,
i=1,...,m}. The set M[H] in these new coordinates takes the form {yly, =
Ni(Vmsts oo es Yn)y i = , m}, where 7, are C*-functions. Consider the shift-
mapping y: y;—y,; —1;1 ,81, = 1, ceesmy, Y=y j=m+1,..., n, where each
B;= By, ..., y,) is of class C* having compact support, bemg equal tooneina
neighbourhood of the origin, and only depending on the above C3-neighbour-
hood @of ( f, H, G). This shift-mapping y induces a C*-coordinate transformation
in the original x-space thereby locally mapping the set M [H ] onto M[H].

The global C'-coordinate transformation. Now we finish the construction of the
desired coordinate transformation ¢;; 5. From the preceding part we may
assume that the mapping H vanishes on the set M [H] in some neighbourhood of
the points x,, . . ., x,. Moreover, we may assume that M [H G] is contained in a
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neighbourhood % of M[H, G], where U only depends on the chosen C:-
neighbourhood O of (f, H, G). By means of the flow of a suitable C' -vectorfield
we transform (in a neighbourhood of M[H, G]) the zero set M [hl, hz, .k ml
to the set M[h, h,, ..., m] Then, similarly, M[A,, hz, h3, ...,k ] i trans-
formed into the set M[h,, h,, };3, e ﬁm], and so, after m steps we have
transformed M [ﬁ] into M{H] (around M[H, G]). In particular, points at which
ﬁ(x) H(x) remain fixed during the latter transformation; hence, the essence of
the former local C*-transformation is not disturbed. We only need to indicate the
first step, i.e. the transformation of M[hl, hz, e ,hm] into the set M[h,,
hz, ..., h,] within the neighbourhood % of M[H, G]. To this aim we consider
the homotopy H(x, v) = vh,(x) + (1 - v)h (x). The above neighbourhood % is
assumed to be small enough in order that the following constructions can be
made:

The vectors D H(x,v), Dh,(x), i=2,...,m, are linearly independent on
U X (—€,1+ ¢), some £>0. For x€M[h,,...,h,]N U, let 7(x) denote the
orthogonal projection (matrix) of R" onto the tangent space {£ €R" | Dh,(x)¢ =
0,i=2,...,m} corresponding to the manifold M[h,, ..., h,]. Next, consider
the vectorfield % on U X (—¢,1+ ¢€):

w-DIH )
1

#.00= (0. 5o

2.1

Note that the term D H - 7+ DTH is positive on % X (—g, 1+ ). From (2.1)
we see that DH - % =0 on U, hence H remains constant ~on the trajectories of F.
So, 1ntegrat1ng in time one, the zero set of H(-,0) (= i ,) is mapped to the zero
set of (-, 1) (=h,). Moreover, the x-component of the flow of &, starting at
M[ﬁz, e ,ﬁm], remains on the latter set. So, in particular, the set M[};l,
52, B ﬁm] is mapped (around M[H, G]) in integration time one to the set
Mlh,, i{z, e Em]. (Technically, the vector field % should be cut off to zero
outside a suitable neighbourhood of M[H, G] x [0, 1].)

Now we explain the reduction to the case ¢ =identity. The only task of the
mapping ¢ is to map the values of the stationary points of the unperturbed
problem to the corresponding values of the perturbed problem. From strong
stability it follows that the stationary points, and hence also their corresponding
objective function values, depend continuously on C:-perturbations of the prob-
lem data.

From condition C3 we see that the stationary values f(x,),..., f(x,) are
pairwise different. So, we only have to perform a shift on R, taking the values
f(x,), ..., f(x,) to neighbouring values v,, . . ., ¥,. Such a shift can be performed
by means of integrating (in time one) the vectorfield

£,(x) = Z (f&) = %) n(x), (2.2)

where 7,(x) is smooth, nonnegative, identically equal to one in a (y-independent)
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neighbourhood of f(x,) and identically equal to zero outside a slightly larger
neighbourhood of f(x,), i=1 , 1

So, from now on we may assume that the critical values of ?/"( f H G) and the
perturbed problem %( f, H, G) coincide for (f, H, G) in some C:-neighbour-
hood @ of (f, H, G), and, in addition, that there are no equality constraints
present, i.e. I =6.

3. Global Construction, Outside the Stationary Points
In virtue of Section 2 we may omit the equality constraints. Put
M[G,F,{]={x€R"| g(x)=0, jE€J, ¢t~ f(x) =0} . 3.1)

Obviously, we have M[G, F, t}|= ¥'(f, G) (cf. (1.3), omitting H). For fixed ¢,
the set M[G, F, t] is a usual constraint set with one special inequality constraint,
namely ¢ — f(x) = 0. We say that MFCQ is fulfilled at x € M[G, F, t] if MFCQ is
fulfilled with respect to the (active) inequality constraints g, j€J, and the
additional inequality constraint £ — f(-). In the latter case, an MF-vector is
defined analogously according to (1.5). The following easy lemma will be crucial
in this section, where M[G] denotes the set M[H, G] with H omitted.

LEMMA 3.1. Let x € M| G] be given, and suppose that MFCQ is fulfilled. Then,
x is a Kuhn—Tucker point for P(f, G) if and only if MFCQ is violated for x
viewed at as an element of M[G, F, f(x)]. |

Let x,, ..., x, again denote the stationary points of the unperturbed problem
P(f, G), equality constraints being omitted. We make the following assumption.

ASSUMPTION A. There exists an >0, such that the closed balls B(X;, ¢),

i=1,...,1, are pairwise disjoint and suc}i t}iat the following holds:
for all t the sets M[G, F,t] and M[G, F, t] coincide on B(x,, e\B(x,, 3 ¢),
i=1,...,L l

Put B=U!_, B(x,, ¢). At each point £ € aM[G, F, {\B we choose an MF-
vector £, (which then is an MF-vector in a neighbourhood of # with respect to
both aM[G, F, {] and aM[G, F, ]). By means of a smooth partition of unity we
obtain a smooth vectorfield £(x) having the property that £(x) is an MF-vector for
all x €aM[G, F, {\B resp. x €aM[G, F, f)\B. Next, consider the normalized
vectorfield n(x) = £&(x)/|| £&(x)|| and cut it smoothy off to zero outside a neighbour-
hood of M[G\B. Now, for each fixed ¢ we rescale n per integral curve and obtain
a Lipschitz continuous vectorfield such that in time-one integration the set
dM[G, F, t]\B is mapped to dM[G, F, t]\B (see also [6]). This gives a Lipschitzian
homeomorphism ¢, sending M[G, F, t\Bto M [G, F, {\B. It is not difficult to see
that ¢,(x) is jointly Lipschitzian in both ¢ and x.
Note that ¢,(x) = x on the set U!_, B(x,, e\B(x,, }¢).
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4. The Local Construction

The following construction, in which we omit equality constraints again, consists
of four parts. In each of the first three parts we describe appropriate mappings in
x-space, due to specific positions (boundary, resp. interior) and characteristics of
our Kuhn-Tucker points before and after a sufficiently small C3-perturbation
(f, G)— (f, G). Let us call these points (x,=)%%, ..., (=), and £, ..., X7,
resp. As our work will be local, we may restrict to one single undisturbed
stationary point x = x*“ and one single (corresponding) disturbed stationary point
—d

x°

Recall that the properties of MFCQ and strong stability are fulfilled at x“ and at
%% In order to express the mentioned characteristics in a brief manner we recall
Kojima’s stationary index at x", denoted by s.index (x“, (f, G)) (cf. [5]). This
is the number of negative eigenvalues of Dsz()E”) | W(x* J,(x*)) provided
LICQ holds at x* and s.index (x“, (f, G)) to be 0 otherwise. It is known that
s.index(x?, (f, G)) = s.index(¥*, (f, G)) (cf. [5]).

In the fourth part we fit our local constructions into the global construction
established in Section 3.

One has to focus the exposition upon the dynamical aspect of homeomorphical
steering our lower level sets. So, we keep the description of the statical aspect
(before and after perturbation) short. However, we explain several main features
of the above steering with a certain representative example, and indicate a typical

way of locally reducing higher dimensional situations to lower dimensional ones.

Case 1 (local construction). We assume: both Kuhn—Tucker points are lying in the
interior; i.e., x* € M[G]\M[G] and ¥* € M[G]\dM[G]. Lemma 1.1 tells us that
the two stationary points are nondegenerate.

We may assume £ to be inside of a ball B(x*, 8) (6 >0), and B(x" 36) to be
disjoint from both boundaries aIM[G], aM [é], and from the 38-balls around the
other undisturbed Kuhn-Tucker points. As our first step we perform a small
C>-shift in B(x“, ) taking £“ to £°. So, we may assume ©“=x =0, and  =0. In
the second step with the aid of a (locally) linear transformation we may identify
D*f(0) with A := sz(O). Here we remark that the latter transformation depends
continuously on the data.

The third step is based on the following linear homotopies:

F (x,v)= Tox"Ax + (1 —v)f(x)

F,(x,v):=lox"ax + (1 - v)f(x)} ((x,v) ER" X R).

By means of F, and ﬁq we define, with some 7>0 and §,€(0,8), two
vectorfields on B(0,28,) X (~7,1+ 1)

T
D F,(x,v)
IDIF,(x, v)]|*”

(051)7 lfx:0

FFq(x,U)2= (—DUFq(JCU) 1), if x+#0 , (4.1)
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and Fy (x v) in the same way replacing F, by F These vectorfields are of class
¢! and we glue them in B(0, 28,\B(0, ;) ) with the constant vectorfield (0,1) €
R" x R. With an integration in time one and reducing to R” agam we arrive at
two C’-diffeomorphisms, OF and OF , taking for an appropnate 8, € (0, 8,) the
level sets of F (-, 0) (=f) and F . 0) (=f) in B(O 8,) onto the correspondmg
level sets of F( 1): x—ix Ax in 6 (B(O 8,)) and 6z (B(O 8,)), resp. For
more details see [7]. Now we conclude ’

. =x, forx&€RNB(0,24,)

©F, oqu)(x){e vy : }
NM[G], otherwise

Let us set § := 9~ ° O, U= =07'(B(0,8,)) N B(0,8,), and ¥ :=8(%). Then
the C’ transformatlon # maps the t-level of f in % onto the tlevel of f in 7,
simultaneously with respect to the parameter t. Moreover, 8 is the identity outside
B(0, 28,): The latter transformation again depends continuously on the data. Now
we may assume that the functions f and f coincide in ¥ C B(0, §,).

In the fourth step, given at the end of Section 4, the construction ouside ¥" will
be completed. There, the appearing functions are only assumed to be of class C L

Case 2 (local construction). Now we turn to the case that x“ lies on the
boundary.
Case 2(a). We assume

x“ e oM[G], (4.2)
s.index(x", (f, G))=1. (4.3)

We note that in this case our stationary points £* and x* must be saddle points
and that LICQ holds. This Case 2(a) contains two subcases, defined by

Subcase 2(a)1: x€ M[GM[G],
Subcase 2(a)2: *°€IM[G].

As f and f are C'-near, in Subcase 2(a)l we have D'f(x*) = DTf(id)=O.
Without restrictions we assume x° to be in the interior of M[G] (shifting
otherwise). The main local strategy can be described in the following way. We
transform our unperturbed situation into an interior situation; i.e., keeping the
inequality constraints fixed we replace x“ by a (fictive) implanted inner saddle
point £ near £%:= 1. But as the situations around £* and £¢ are similar now, we
are back in Case 1. Note, that the result of such an implantation can be realized
by means of a small C”-shift, corresponding with a small perturbation of f.
Moreover, taking arguments as in Case 1 into account, we may assume that f and
f around £* and £°, resp., are quadratic forms, and at last even sums of squares
(Morse-type normal forms).

In Subcase 2(a)2, however, we perform two implantations, the first for the
unperturbed problem: x“— £ and the second for the perturbed one: ©— £%
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But now it might happen that one of the Lagrange multipliers does not vanish.
So, a nesting of a nucleus (germ) of implantation structure might become more
complicated than in Subcase 2(a)l. Nevertheless we essentially reduced our task
to Case 1 again.

Now, let us be concerned with some operational details. Let J,(x") be the set
{L,...,p} (p=s). Choose vectors &,.,,...,&,ER" such that {DTg,-(JE“)
(FE€ Jo(£*)), &,41,- - -, £,} is a basis for R". By means of the C*-transformation
{s, defined by

=&)Y, =g, Y =€ (X=X, y, = € (- XY)
one locally linearizes M[G] around x“, to H? X R""? around 0. In Subcase 2(a)2

we work with a special local linearization {z for the perturbed problem, namely
with Jo(¥%) = {1, ..., q} (¢ =p) (as one many assume) near x° (and ©*) by

Y1=8()s s Y= 8(0), Vg1 = Egn(®), .y, =E,(0), }

Voir = Eni(x =3, .y, = EN(x— 1)

We note, that around ¢ the transformed set M[G] becomes a small relative
neighbourhood in H? x R”~9, around the point {5(x®) (perhaps being 0, too) and
that {; and {5 are C*-near.

See Figure 4.1 for the most relevant pictures in dimension three with vanishing

gradient D'f(x*) ({f=1} 1= {xER" | f(x) = 1}).

oM[G {f=13(t<1)
{(f=00>1

oM[G]

4 {f=00>0)
{f=0@<1)

-

B/:=
aM[GIN{f=1t}
transversally

B ST Y )
\ Y3

Fig. 4.1. Strongly stable saddle points (Case 2(a)) with D'f(#“) =0 (n =3): in a pointed neighbour-
hood of the stationary boundary point x* the level sets of f meet dM[G] (locally linearized) without
any tangential effect (transversality). Different types naturally arise by particular growth behaviours.
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£ B*:=aM[G]N{f=1)
aM[G] B{t>1) transversaily
Bi(t=1) Vi Y2
(r<1)
T := W(E", Jo(£*)) Ys

Fig. 4.2. A strongly stable saddle point (Subcase 2(a)2) with D'f(x*)#0 (n=3): in a pointed
neighbourhood of the stationary boundary point x* the level sets of f meet dM[G] (locally linearized)
without any tangential effect (transversality). Example (cf. type 2 in Figure 4.1): |J,(x*)]=2, T
denoting the tangent space of aM[G] at ™

As some significant realization of Subcase 2(a)2 we look at Figure 4.2.

Moreover, from the (feasible) level structure near a saddle point x with
D7f(¥)#0 we can always, in a fictive sense, extrapolate to a strongly stable
saddle point Z beyond x with vanishing gradient of a quadratic objective function
at Z, such that x occurs as a saddle point induced by Z. We refer to Figure 4.2
merely to illustrate for the unperturbed problem what should be the result of
implantation. One knows the boundary aM[G] to be an (n —1)-dimensional
Lipschitzian manifold (cf. [8]) with MF-vector &, say (1, 1, 0)", in Figure 4.2. So,
we can always interpret Figure 4.2 in higher dimensions. We assume from now on
that we are in the linearized situation. With 8 >0 sufficiently small we choose

2:=-58(1,...,1,0,...,0)".
V- N N ——
p n—p
Note that
z—(0,...,0,z,,,,... ,z,)"
e e —
p n—p

is a projection to the tangent space T, and the quadratic function

P
202 (z,+8) +
i=1

1
3 0,...,0,z,,4,...,2,)C(0,...,0, zpﬂ,...,z")T (44)

is a fictive second order “approximation” for f (more precisely for fo { ;') around
%, here C=(D¢5'(0)'D ZL[ w )D{ ='(0). Now, taking account of geometry and
a linear transformation (cf. [7]), there is no loss of second order information if we
replace (4.4) by (4.5):

14 n
2 2 (z;+ 8V + 2 (2z}). (4.5)
=1 k=p+1

Here the numbers of signs © is just s.index (¥¥, (f, G)), hence =1. Then we
switch that arbitrarily small neighbourhood of Z into the interior; i.e., by
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translation we arrive at

#=8(1,...,1,0,....,0)"
p n—p
which is the critical point of the quadratic form
P n
flaxm 2 -8+ 2 (2x3), (4.6)
j=1 k=p+1

locally around x“ Outside of that neighbourhood we can r-wise “nest” f“ into the
local level structure of f. In a coupled way (shift of f*) we also achieve a fictive
saddle point £/ and a nested function ¢ for our disturbed problem.

So, we know what we have to implant.

Our above illustration refers to a small neighbourhood of £* and to an
arbitrarily small neighbourhood of #* (and £?) therein. The way of nesting of f*
and f¢ around x* and x“, resp., is nothing else than a (fictive) shift of a stationary
point into the interior and it will be handled as such in the subsequent example.
The MF-vector ¢ gives a vertical flow structure for both the unperturbed and the
perturbed problem defined by the constant vector field £.

Now, let us turn to the fechnical aspect of the two implantations; we may
choose the unperturbed situation ( f, G). For our example in dimension n = 3 we
restrict on an implantation within the case DTf(,\?”) = 0. Moreover, £ may be
interpreted as being shifted into the interior after some perturbation of f and it is
placed on the trajectory of the constant vector field ¢ which runs through x“ We
assume as above that the new function f“ near £ has the normal form IR
(up to translation in x-space). As there is still a piecewise linearity of aM[G] in
Figure 4.1, type 2, and this creased Lipschitzian manifold can be made almost flat
(by a linear transformation), we actually proceed for it with construction-ideas
similar to the ones for type 1. So for our example we prefer x“ to be of the (with
respect to ¢) radial type 1 instead of the more conical type 2. Then, however,
[Jo(x*)| =1 necessarily holds, and we can give an impression how our later
dimensional reduction might also work. Indeed, a careful reflection justifies the
following assumption.

ASSUMPTION. There is a family of hypersurfaces, say even hyperplanes,
parametrized by the rotation-angle « € [0, 7), which meet in the axis through the
origin generated by £. Moreover they transversally intersect in some small feasible
neighbourhood of x* all the t-levels of f (for t # t near t) and the critical t-level:
namely, in two C*-components (one component) for t<1 (t>1, resp.) and, for
t=1t, in two C’-manifolds meeting in ©*. O

Thus, our radial surface structure is compatible with the vertical fiow-box. Now,
we may locally reduce our 3-dimensional situation to a family of 2-dimensional
situations (cf. Figure 4.3).
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Morse
structure

above
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Fig. 4.3. Reduction before perturbation (e, € [0, m)): from the 3-dimensional situation of our
example we turn to the codim.1 situation given by a specific vertical hyperplane, which conserves the
sums of squares (Morse) structure around the fictive stationary point £*

—u

X

sl

T———-

M-

—

boundary
displacement

X boundary
displacement

- boundary
displacement

Fig. 4.4. Mapping of area and boundaries in a reduced situation, before perturbation (o, € [0, 7)): we
continue Figure 4.3 for our example. Boundary displacement: The plotted mappings imply that parts
of AM[G] wander inwards to pieces of the fictive level set. For ¢t =7 there pieces are composed by

“legs”.
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So, our full-dimensional control will just integrate a family of well-coupled
controls with dimension decreased by 1. Each of the latter steerings has to
perform the mappings depicted in Figure 4.4. In this figure three levels are
distinguished. In every case the hatched areas have to be mapped onto the
corresponding hatched areas.

Although we focus on the hyperplane section corresponding to an arbitrary
fixed a, €[0, 7), the whole local construction will be done simultaneously w.r.t.
.

In our example two difficulties arise. On the one hand it is possible that for
some ¢ near f the transversal intersection B* between the t-level of £* and the
plane through %, locally being parallel dM[G], does not precisely lie above the
corresponding transversal intersection B; of the t-level of f and d M[G] (geometri-
cally below). On the other hand, at some x € B! (t<t) a trajectory of our
flow-box might be tangent to the t-level of f (the analogous difficulty will arise
above). However, for each t <17 near ¢t we dynamically perform a horizontal
C?-shift ( positioning) from B to the projection of the set B* (locally onto
dM[G]) and, moreover, for each 1= we dynamically realize a (continuous)
sharpening of the t-level of f and its intersection with the boundary. So we
received points of intersection, which describe kinks and full-dimensionally form
our so-called fundamental domain (for 7). We also need such fundamentai
domains above, for the Morse structure. As it is made clear in Figure 4.4 an
incomparability between the level structure for our unperturbed and our fictive
inner problem appears. Therefore, we make with respect to each ¢ = ¢, a raising of
dM[G] in our flow-box. In this way we “sucked” area from outside of M[G].

For ¢ > t the raising from £ is continuously (in ¢) reduced to zero.

Now, having Figure 4.4 in mind we know how to proceed in the new situation
from Figure 4.5. For each ¢ near ¢ this picture exhibits pairs of comparable

boundary
displacement

* % % mapping;— {

Fig. 4.5. A radial section (a, €[0, 7)) and its significant profiles: for our example we transfer the
mapping (of area and boundaries) from Figure 4.4 into the situations where some positioning and
sharpening and (in the original unperturbed situation) a raising of d M[G] are made. Now, especially:
k> k| Kk —> KK,
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elements, one due to the unperturbed problem and the other due to the fictive
problem. Thus, we established situations being similar with the manifold’s
comparability which underlies the MF-technique from Section 3. Indeed, in a
small neighbourhood of a pair of corresponding elements from the two fundamen-
tal domains (for t=1, especially, of both saddle points) we have in hand
transversality of our vertical flow with respect to both the ‘““manifold of start” and
the ‘“‘manifold of termination”, and finally arrive at our desired steering there,
namely by a C*-flow followed by a continuous (horizontal) tapered deviation-
straightening.

Figure 4.6 gives an insight, how this quite local steering compleies to the
intended local transformation (implantation).

Let us leave our example with the remark that for examples of type 2 we would
better do the positioning above, namely in certain projective sense from B* to BY.
So, our fictive problems are quite appropriate (as the right links between the
perturbed and the unperturbed problem), because for them we have “place to
work”. We emphasize this advantage especially for the case of a nonsmooth
boundary dM[G], where our local construction actually works, too. Moreover,
every saddle point ¥“ with D'f(x“)#0 allows an almost similar exposition
because of similar local geometry relative to type 1 or type 2.

Now, in order to indicate briefly in Case 2(a) how for an implantation with
respect to any n >3 the local reduction to a lower dimensional case happens, we
work again with (f, G). We use an approach which systematically exploits
radiality (and transversality). For simplicity we assume |J,(x*)| =1 and that our
function f restricted to dM[G] possesses a normal form around x“. In Subcase
2(a)2 this germ in R" ™ reveals the same stationary index as the extrapolated, then
switched and implanted, saddle point x“ of * in R". In the boundary dM[G] we
cross one ball of rotation (in the normal form) by means of an intersection with a
transversal hyperplane (cf. Figure 4.7); i.e., we cross out one @ or one © from

Fig. 4.6. Implantation before perturbation; sucked area, loaded by raising (a, €[0, 7), t<f): the
quite local steering (cf. Figure 4.5), consisting of a C*-flow (*x*— ) and a residual tapered flow,
evolves into a local transformation. (Cf. Figure 4.4; we refer to the situations after some positioning,
sharpening and a raising.)
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aM[G]riduction: ‘: © ( ) )

(transversal
section)

2 .2 2
=X — X, =T X, < typel

Morse normal forms
(up to translations)

2! 2
r ‘ r,

A

type 2:

—

2 2 /2 2
x1+"'+xk1—(xk1+1+"'+xn—1)

% 1<k, <n-2

@ x ; © degenerate

spherical scheme

Fig. 4.7. Crossing (before lifting) in the boundary, before perturbation (Case 2(a)): Example:
[J,(E)| = 1. We “cross” out one @ or one & be means of a suitable relative hyperplane in aM[G]
(which then has to be lifted in vertical direction). Degeneracy: a sphere becomes a single point.

the normal form at each of its levels ¢ near . This can suitably proceed, step by
step, until we arrive at n — 1 =2 and together with a further @ at the characteris-
tic { @, © }-distribution, at least of our fictive structure, reduced to dimension
n=23. In fact, this crossing has to be lifted from the boundary into the (full)
space, let us say in direction £.

Hence, one is back in a well understood dimension where one now simulta-
neously works with respect to a family of unperturbed and fictive problems
parametrized by (e, ..., a, ;) E[0, 7)" . So we finished our reduction in a
t-independent way.

Now, we proceed with the third part of our proof. We are in Case 2(b) with the
assumption:

i EaM[G], (4.7)
s.index(x”, (f, G))=0. (4.8)

In particular, x*“ must be a local minimum. Whereas the main lines of construction
presented for saddle points in Case 2(a) remain the same, in detail we often must
argue in a more technical way because LICQ is not always guaranteed at x"
(perhaps loss of piecewise smoothness of 3M[G]).

Again for each n €N, n =2, we would start with one or two implantations, one
for the unperturbed and maybe another in the perturbed problem, reducing to
n =2, Then we essentially proceed as in Case 1. Now, Subcase 2(b)1 and Subcase
2(b)2 naturally arise as subcases as in Case 2(a). Indeed, for implantation we
always nest ball-structures of (lower) levels. Hence, our elaborated steering is
finally based on a spherical argumentation; for instance, the appropriate dimen-
sional reduction sophistically happens sphere —, i.e. -wise. A stationary point ¥
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type O

Fig. 4.8. A strongly stable point in Case 2(b) with D'f(x*) =0 (n = 3): in a pointed neighbourhood of
the stationary boundary point x* the level sets of f and dM[G] meet without any tangential effect
(transversality; B} = {f= 1t} N o0M[G]). Example (in bird’s-eye view): variously structured and highly
nonsmooth boundary. s

with (4.7), (4.8), and D"f(x) =0, is called of type 0. This type is totally radial
(like type 1; cf. Figure 4.8). Let us again choose x“ instead of x.

Now, we work out an adequate perturbation technique (geometrically below)
for the MF-vector induced flow-box. In fact, we only need to sharpen above (i.c.
for our fictive structure) and we can avoid the positioning of “kinks”. These kinks
at our Lipschitzian fundamental domains, however, geometrically point away
from x“ and £, resp. But, while for saddle points we mapped x“+— £“ with respect
to all 1=1¢, now x"“+> £ is assured only for ¢ = ¢.

Since from a radial point of view we have a dynamical smoothing technique in
hand, we may state that Figure 4.9 essentially reflects our radial steering.

At this moment of entrance into the last part of the proof we can state as a
résumé that we have finished our local constructions around all our Kuhn—Tucker
points x; (i=1,...,1). Moreover in Case 2(a), (b) we could guarantee that
outside of some very small common neighbourhood of %, and x¢, say B(%,, p)
(p >0), in our unperturbed and in our perturbed situation the fictive new level
structure coincides with the one of f and f. resp. Namely, we worked in a more set
theoretical than (due to (f, G)) functional way of transformations, similar to the
MF-technique from Section 3 (details omitted). Having always turned to Case 1,
we locally proceed with such a t-wise dynamical treatment of (lower) level sets
outside of an arbitrary small (already treated) neighbourhood of £/. So, with a
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2 : g
R ‘ | pe
(or merely T I>F
n—1 = f ;" A _
R™) g% glicts near ¢
Z A% B!
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Fig. 4.9. A radial section and its significant profile (type 0): The lower hatched area has to be
transformed onto the upper one. Moreover: *— %, *x— %, (Cf. Figure 4.3-4.6).

shrinking of p, if necessary, in the outer subset B(x;, e\B(¥;, 3¢) of a closed little
ball around x; (¢ > 0) — in particular — we can make M{G, F, t] and MI[G, F, 1] for
all ¢ to coincide, actually by MPF-technique being ready to evolve into the
complement of B(x;, €). But this just constitutes our Assumption A from Section

3.
Now, the local constructions are fitted in the global constructions, and we

reached our parametrized pair of transformations (¢,, ) due to a sufficiently
slight perturbation of our optimization problem. O
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